Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Novel cardiac magnetic resonance (CMR) stress T1 mapping can detect ischemia and myocardial blood volume changes without contrast agents and may be a more comprehensive ischemia biomarker than myocardial blood flow.This study describes the performance of the first prospective validation of stress T1 mapping against invasive coronary measurements for detecting obstructive epicardial coronary artery disease (CAD), defined by fractional flow reserve (FFR <0.8), and coronary microvascular dysfunction, defined by FFR ≥0.8 and the index of microcirculatory resistance (IMR ≥25 U), compared with first-pass perfusion imaging.Ninety subjects (60 patients with angina; 30 healthy control subjects) underwent CMR (1.5- and 3-T) to assess left ventricular function (cine), ischemia (adenosine stress/rest T1 mapping and perfusion), and infarction (late gadolinium enhancement). FFR and IMR were assessed ≤7 days post-CMR. Stress and rest images were analyzed blinded to other information.Normal myocardial T1 reactivity (ΔT1) was 6.2 ± 0.4% (1.5-T) and 6.2 ± 1.3% (3-T). Ischemic viable myocardium downstream of obstructive CAD showed near-abolished T1 reactivity (ΔT1 = 0.7 ± 0.7%). Myocardium downstream of nonobstructive coronary arteries with microvascular dysfunction showed less-blunted T1 reactivity (ΔT1 = 3.0 ± 0.9%). Stress T1 mapping significantly outperformed gadolinium-based first-pass perfusion, including absolute quantification of myocardial blood flow, for detecting obstructive CAD (area under the receiver-operating characteristic curve: 0.97 ± 0.02 vs. 0.91 ± 0.03, respectively; p < 0.001). A ΔT1 of 1.5% accurately detected obstructive CAD (sensitivity: 93%; specificity: 95%; p < 0.001), whereas a less-blunted ΔT1 of 4.0% accurately detected microvascular dysfunction (area under the receiver-operating characteristic curve: 0.95 ± 0.03; sensitivity: 94%; specificity: 94%: p < 0.001).CMR stress T1 mapping accurately detected and differentiated between obstructive epicardial CAD and microvascular dysfunction, without contrast agents or radiation.

Original publication

DOI

10.1016/j.jacc.2017.11.071

Type

Journal article

Journal

Journal of the american college of cardiology

Publication Date

03/2018

Volume

71

Pages

957 - 968

Addresses

Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.