Mechanical chest compression devices may help to maintain high-quality cardiopulmonary resuscitation (CPR), but little evidence exists for their effectiveness. We evaluated whether or not the introduction of Lund University Cardiopulmonary Assistance System-2 (LUCAS-2; Jolife AB, Lund, Sweden) mechanical CPR into front-line emergency response vehicles would improve survival from out-of-hospital cardiac arrest (OHCA).Evaluation of the LUCAS-2 device as a routine ambulance service treatment for OHCA.Pragmatic, cluster randomised trial including adults with non-traumatic OHCA. Ambulance dispatch staff and those collecting the primary outcome were blind to treatment allocation. Blinding of the ambulance staff who delivered the interventions and reported initial response to treatment was not possible. We also conducted a health economic evaluation and a systematic review of all trials of out-of-hospital mechanical chest compression.Four UK ambulance services (West Midlands, North East England, Wales and South Central), comprising 91 urban and semiurban ambulance stations. Clusters were ambulance service vehicles, which were randomly assigned (approximately 1 : 2) to the LUCAS-2 device or manual CPR.Patients were included if they were in cardiac arrest in the out-of-hospital environment. Exclusions were patients with cardiac arrest as a result of trauma, with known or clinically apparent pregnancy, or aged < 18 years.Patients received LUCAS-2 mechanical chest compression or manual chest compressions according to the first trial vehicle to arrive on scene.Survival at 30 days following cardiac arrest; survival without significant neurological impairment [Cerebral Performance Category (CPC) score of 1 or 2].We enrolled 4471 eligible patients (1652 assigned to the LUCAS-2 device and 2819 assigned to control) between 15 April 2010 and 10 June 2013. A total of 985 (60%) patients in the LUCAS-2 group received mechanical chest compression and 11 (< 1%) patients in the control group received LUCAS-2. In the intention-to-treat analysis, 30-day survival was similar in the LUCAS-2 (104/1652, 6.3%) and manual CPR groups [193/2819, 6.8%; adjusted odds ratio (OR) 0.86, 95% confidence interval (CI) 0.64 to 1.15]. Survival with a CPC score of 1 or 2 may have been worse in the LUCAS-2 group (adjusted OR 0.72, 95% CI 0.52 to 0.99). No serious adverse events were noted. The systematic review found no evidence of a survival advantage if mechanical chest compression was used. The health economic analysis showed that LUCAS-2 was dominated by manual chest compression.There was substantial non-compliance in the LUCAS-2 arm. For 272 out of 1652 patients (16.5%), mechanical chest compression was not used for reasons that would not occur in clinical practice. We addressed this issue by using complier average causal effect analyses. We attempted to measure CPR quality during the resuscitation attempts of trial participants, but were unable to do so.There was no evidence of improvement in 30-day survival with LUCAS-2 compared with manual compressions. Our systematic review of recent randomised trials did not suggest that survival or survival without significant disability may be improved by the use of mechanical chest compression.The use of mechanical chest compression for in-hospital cardiac arrest, and in specific circumstances (e.g. transport), has not yet been evaluated.Current Controlled Trials ISRCTN08233942.This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 21, No. 11. See the NIHR Journals Library website for further project information.

Original publication

DOI

10.3310/hta21110

Type

Journal article

Journal

Health technology assessment (Winchester, England)

Publication Date

03/2017

Volume

21

Pages

1 - 176

Addresses

Warwick Clinical Trials Unit, University of Warwick, Coventry, UK.