Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The copines are a family of C2- and von Willebrand factor A-domain-containing proteins that have been proposed to respond to increases in intracellular calcium by translocating to the plasma membrane. The copines have been reported to interact with a range of cell signalling and cytoskeletal proteins, which may therefore be targeted to the membrane following increases in cellular calcium. However, neither the function of the copines, nor their actual movement to the plasma membrane, has been fully established in mammalian cells. Here, we show that copines-1, -2, -3, -6 and -7 respond differently to a methacholine-evoked intracellular increase in calcium in human embryonic kidney cell line-293 cells, and that their membrane association requires different levels of intracellular calcium. We demonstrate that two of these copines associate with different intracellular vesicles following calcium entry into cells, and identify a novel conserved amino acid sequence that is required for their membrane translocation in living cells. Our data show that the von Willebrand factor A-domain of the copines modulates their calcium sensitivity and intracellular targeting. Together, these findings suggest a different set of roles for the members of this protein family in mediating calcium-dependent processes in mammalian cells.

Original publication

DOI

10.1111/j.1742-4658.2010.07935.x

Type

Journal article

Journal

Febs j

Publication Date

12/2010

Volume

277

Pages

5174 - 5189

Keywords

Amino Acid Sequence, Animals, COS Cells, Calcium, Carrier Proteins, Cell Line, Cercopithecus aethiops, Humans, Intracellular Membranes, Molecular Sequence Data, Protein Transport, Recombinant Proteins, Sequence Homology, Amino Acid, Signal Transduction